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Abstract. We study, at finite temperature, the energy–momentum tensorTµν(x) of a charged
scalar field interacting with a static background electromagnetic field.Tµν separates into an UV

divergent partT seaµν representing the virtual sea, and an UV finite partT
plasma
µν describing the thermal

plasma of the matter field. In the presence of a constant electric fieldEE, T seaµν remains uniform

while T plasmaµν becomes spatially non-uniform in the direction ofEE. A related (periodic) spatial
non-uniformity is found for a constant static magnetic fieldEB if one spatial direction perpendicular
to EB is compactified to a circle.

1. Introduction

A finite-temperature (T > 0) or thermal quantum field can be visualized as aseaof virtual
particles coexisting throughout space with a thermalgasof real particles or field excitations.
The virtual particle sea is independent of the temperatureT . It can, however, be deformed by
coupling the field to static background structures of various kinds. This is generally known
as the static vacuum Casimir effect. Somewhat less widely known is that, for boundaries and
other static backgrounds, the thermal gas is ‘mechanically’ distorted along with the sea.

Abelian (and non-Abelian) gauge theories present Casimir problems with very interesting
and unusual features arising from the underlying gauge invariance. Indeed, the restrictions on
the class of allowed gauge transformations imposed byT > 0 are found to have remarkable
consequences for the spatial energy distribution of a charged thermal matter field coupled to a
static background electromagnetic field (EE, EB). The local distortion by( EE, EB) of the virtual
sea and thermalplasma(as we now refer to the thermal gas consisting of both particles and
antiparticles) can be revealed by computing the stress energy–momentum tensorT (β)µν of the
thermal field and the local LagrangianLβ .

The problem of charged quantum fields coupled to a uniform electromagnetic background
field is an old one, going back to renowned papers by Euler and Heisenberg [1] and Schwinger
[2]. Much of the subsequent literature is reviewed in [3–5], nearly all of this work being
restricted to zero-temperature fields. Much less work has been done onT > 0 quantum
fields coupled to a static electromagnetic background (see, in particular, papers [6–10] and
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reviews [11, 12]). For some reason the global features of the problem have received most of
the attention, while local aspects seem to have been neglected.

In the present paper we investigate the local response of gauged thermal matter fields
to a background electromagnetic field using the Euclidean (imaginary time) or Matsubara
formalism (see, e.g., [13–15]). We formulate (d + 1)-dimensional scalar electrodynamics on
a hypercylinder of circumferenceβ = 1/T in the Euclidean time direction, choosing space
to be flat and infinite. Our results reveal that a uniform background electric fieldEE causes
the thermal plasma to become non-uniform along the direction ofEE, while the sea remains
spatially uniform. This spacial non-uniformity has gone unnoticed in previous work [8–10]
using global methods.

In [16] the same spatial non-uniformity of the thermal plasma was demonstrated for the
case of the finite-temperature Schwinger model. Here we present analogous but more general
calculations for thermal scalar fields, for which the discussion can easily be carried out in
arbitrary spatial dimension. By coupling the scalar field to an arbitrary static gauge potential
Aµ(Ex) we show that the characteristic effects arising from minimal coupling are common to
all dimensions. Special attention is drawn to periodicity features related to gauge invariance
and to the topologyS1×Rd of Euclidean space–time. We then compute for the specific gauge
potentialAµ = (Ex1 + const, E0), the thermal stress tensorT (β)µν (x) and effective Lagrangian
Lβ(x). The dependence of the thermal plasma on the spatial coordinatex1 is thereby made
explicit.

A uniform background magnetic fieldEB is also very briefly considered.EB causes no
spatial non-uniformity in the thermal plasma or sea unless a spatial direction perpendicular to
EB is compactified.

2. Thermal scalar field

Scalar electrodynamics is useful as a theoretical laboratory for studying gauge theory
phenomena in arbitrary space–time dimension. We first compare the general problems of
a thermal scalar field̂φ coupled with an arbitrary static (i) non-gauge background potential
V (Ex) and (ii) gauge potentialAµ(Ex). We then specialize to the potentialAµ = (Ex1+const, E0)
for a uniform background electric fieldEE = (E, 0, . . . ,0) and compute explicitly the thermal
stress tensor of̂φ. The case of a uniform magnetic field is also discussed briefly.

2.1. Scalar field in a static background Schrödinger potential

To set the stage we briefly review the case of a scalar quantum field interacting with a
static background potentialV (Ex) in d-dimensional free spaceRd . We wish to study the
thermodynamical properties and vacuum Casimir energy of this system. To this end it will be
convenient to work in the imaginary time or Matsubara formalism. Euclidean space–time is
then a hyper-cylinderS1× Rd . Correspondingly, we impose periodic boundary conditions in
Euclidean time on the scalar fieldφ(x0, Ex)†,

φ(x0, Ex) = φ(x0 + β, Ex) (2.1)

whereβ = 1/T andT is the temperature. The spectral operator for the theory in question is
[−∂2

0 −1 +V (Ex)] with 1 the Laplacian ind dimensions. The vacuum and thermodynamical
properties of the system can be computed from the bilocal heat kernel

h(β)(t; x, y) =
∑
k

e−tλ
2
kφk(x)φ

∗
k (y)

† Throughout this section we use the Euclidean notationx = {xµ} = (x0, Ex).
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whereλ2
k and φk(x0, Ex) are the eigenvalues and respective eigenfunctions of the spectral

operator,

[−∂2
0 −1 + V (Ex)]φk(x) = λ2

kφk(x).

With φ(x) subject to the boundary condition (2.1) we have

φk(x)→ φmn(x) = 1√
β

ei( 2πm
β
)x0ϕn(Ex)

λ2
k → λ2

mn =
(

2πm

β

)2

+ ω2
n

(2.2)

where the spatial modesϕn(Ex) and associated spectrum{ω2
n} are determined by the spatial

mode equation

[−1 + V (Ex)]ϕn(Ex) = ω2
nϕn(Ex).

The Euclidean thermal Green function† then has the spectral representation

〈φ̂(x)φ̂(y)〉β =
∑
m,n

φmn(x)φmn(y)
∗

[( 2πm
β
)2 + ω2

n]

=
∫ ∞

0
dt

1

β

∑
m

e−t (
2πm
β
)2ei 2πm

β
(x0−y0)

∑
n

e−tω
2
nϕn(Ex)ϕ∗n(Ey).

We may perform the Matsubara sum by using the Jacobi identity [17]
∞∑

m=−∞
e−b(m−a)

2 =
√
π

b

∞∑
l=−∞

e−
π2l2

b e−i2πal (2.3)

with the result

〈φ̂(x)φ̂(y)〉β =
∫ ∞

0
dt h(t; x, y)T=0

∞∑
l=−∞

e−
l2β2

4t e
lβ

2t (x0−y0) (2.4)

where

h(t; x, y)T=0 =
√

1

4πt
e−

(x0−y0)2
4t

∑
n

e−tω
2
nϕn(Ex)ϕ∗n(Ey) (2.5)

is theT = 0 bilocal heat kernel of the operator [−∂2
0−1+V (Ex)]. Hence, for a static background

potential theT > 0 Green function separates [18] into two distinct and well defined parts:
the virtual seapart (l = 0 contribution) which is independent ofT and coincides with the
T = 0 Green function, and thethermal gaspart (l 6= 0 contribution) which exhibits the full
temperature dependence and vanishes exponentially asT → 0:

〈φ̂(x)φ̂(y)〉 = 〈φ̂(x)φ̂(y)〉sea + 〈φ̂(x)φ̂(y)〉gas .
Now suppose that we have calculated from〈φ̂(x)φ̂(y)〉sea theT = 0 vacuum stress tensor

T µνsea ≡ 〈T̂ µν〉 =
∑
n

T µνn (2.6)

as a (still to be renormalized) spatial mode sum. Repeating the calculation at finite temperature,
from equation (2.4) we obtain

T (β)µν = 〈T̂ µν〉β
=
∑

T µνn
1 + e−βωn

1− e−βωn

= T µνsea +
∑
n

T µνn
2

eβωn − 1

= T µνsea + T µνgas . (2.7)

† We denote operators by a ‘hat’.
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At finite temperature the mode sum is thus modified by the familiar Bose–Einstein distribution,
in agreement with one’s expectations. This completes our brief review of a usual Casimir
problem atT > 0.

2.2. Scalar field in a static background gauge potential

Let us now consider a (massive or massless) scalar quantum fieldφ(x) coupled to astatic
Abelian background gauge potentialAµ(Ex). Again the quantum fieldφ(x0, Ex) is required to
satisfy the periodic boundary condition (2.1) in Euclidean time. The relevant spectral operator
in this case is the gauged Laplacian ind + 1 dimensions−D2

µ, whereDµ = ∂µ− iAµ couples
the quantum scalar field to a static Euclidean background gauge potentialAµ(Ex). (We have
absorbed the electric charge intoAµ.) The thermodynamical and vacuum properties of the
system can again be computed from the bilocal heat kernel

h(β)(t; x, y) =
∑
k

e−tλ
2
ke−tM

2
φk(x)φ

∗
k (y)

whereλ2
k are the eigenvalues of−D2

µ, M is the mass andφ(x) is subject to the boundary
condition (2.1). Periodicity inx0 implies

φk(x)→ φmn = 1√
β

ei 2πm
β
x0ϕmn(Ex)

whereϕmn(Ex) now satisfies the associated eigenvalue problem

[−( E5 − i EA(Ex))2 + Vm(Ex)]ϕmn(Ex) = λ2
mnϕmn (2.8)

with

Vm(Ex) =
[
A0(Ex)− 2πm

β

]2

. (2.9)

Notice that them-dependence of the Schrödinger-like background potentialVm(Ex) leads to a
coupling of spatial positionEx with the Matsubara frequencies. Equation (2.8) thus represent
a different equation for each Matsubara frequency2πm

β
, with n labelling the complete set of

normalizable solutions{ϕmn} of this Schr̈odinger problem for a given potentialVm(Ex). The
situation is thus very different from the scalar case discussed previously. It is characteristic of
gauge theories and has very important consequences as we shall see.

On the cylinderS1 × Rd we can always gauge a staticA0(Ex) to the interval [0, 2π
β

], but
not in general to zero, if we respect the periodicity property (2.1). The only exception is
whenA0 = N 2π

β
, in which case we may gaugeA0 to zero by performing the (allowed) gauge

transformationA0→ A0 + ∂0λ with λ = ( 2πN
β
)x0.

Another way of stating this is to observe that in the exceptional caseA0 = N 2π
β

the
gauge transformation can be absorbed into the Matsubara indexm via the transformation
m→ m+N . For this reasonA0(Ex) is always gauge equivalent to a configuration taking values
in the range [0, 2π

β
], so that effectively, atT > 0, the time componentA0(Ex) of the Euclidean

gauge potential becomes an angular variable. In the zero-temperature limit, on the other hand,
we may always gaugeA0(Ex) to zero. Indeed, the discrete Matsubara frequenciesk0 = 2πm

β

become a continuous variablek0 in the range−∞ < k0 < ∞, andA0(Ex) may be absorbed
into a shift ink0 under the integral

∫
dk0.
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Green function. Following the steps of the previous section, this time we have for the thermal
Green function

〈φ̂(x)φ̂(y)〉β =
∑
m,n

φmn(x)φ
∗
mn(y)

[λ2
mn +M2]

=
∫ ∞

0
dt e−tM

2 1

β

∑
m

ei 2πm
β
(x0−y0)hm(t; Ex, Ey) (2.10)

where

hm(t; Ex, Ey) =
∑
n

e−tλ
2
mnϕmn(Ex)ϕ∗mn(Ey) (2.11)

is the spatial bilocal heat kernel for themth spatial background potentialVm(Ex) in (2.9) .
Notice that because of the coupling of Matsubara frequencies with the spatial modes the Green
function can no longer be trivially separated into ‘sea’ and ‘gas’ contributions as in the potential
problem discussed previously. However, this separation still exists, as the real-time approach
toT > 0 QFT makes clear [9]. In the explicit examples that follow the separation into sea and
gas components also eventually emerges in a natural fashion in the Matsubara approach.

Energy–momentum tensor.The symmetric canonical energy–momentum tensor for the
complex scalar field̂φ(x) coupled to a backgroundAµ in Euclidean space–time is formally
given by

T̂µν = 1
2[(Dµφ̂)

†(Dνφ̂) + (Dνφ̂)
†(Dµφ̂)] − δµνL̂

where

L̂ = 1
2[(Dµφ̂)

†(Dµφ̂) +M2φ̂φ̂†].

Using the equation of motion(DµDµ −M2)φ̂ = 0 we have for the divergence ofT̂µν ,

∂µT̂µν = Fµν i

2
[φ̂†(Dµφ̂)− (Dµφ̂)

†φ̂]

with Fµν = ∂µAν − ∂νAµ, and for the trace,

T̂ µµ = 1
2(1− d)(Dµφ̂)

†(Dµφ̂)− 1
2(1 +d)M2φ̂†φ̂. (2.12)

From (2.12) we see that̂Tµν is traceless only in thed = 1 spatial dimension forM = 0.
Furthermore, we see thatT̂µ0 is conserved ifFi0 = 0, that is, if the electric field vanishes. This
still allows for a static magnetic field, which makes sense, since a static magnetic field cannot
do work on charges.

From (2.4) the thermal stress energy tensorT (β)µν = 〈T̂µν〉β is now easily written down.
We have, for the separate components

〈D0φ̂(x)[D0φ̂(x)]
†〉β =

∫ ∞
0

dt e−tM
2 1

β

(
2π

β

)2∑
m

[m− a(Ex)]2hm(t; Ex, Ey) (2.13)

〈Diφ̂(x)[Dj φ̂(x)]
†〉β =

∫ ∞
0

dt e−tM
2 1

β

∑
m

lim
Ex→Ey
{(Dx

i )
†D

y

j hm(t; Ex, Ey)} (2.14)

〈D0φ̂(x)[Dj φ̂(x)]
†〉β =

∫ ∞
0

dt e−tM
2 1

β

(
2iπ

β

)∑
m

[m− a(Ex)] lim
Ex→Ey
{(Dy

j )
†hm(t; Ex, Ey)}

(2.15)

〈|φ̂(x)|2〉β =
∫ ∞

0
dt e−tM

2 1

β

∑
m

hm(t; Ex, Ex) (2.16)
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where

a(Ex) = β

2π
A0(Ex)

is the rescaled temporal componentA0.
We emphasize thatA0 is still Euclidean. Our ultimate goal is, of course, the Minkowski

space–time tensorT (β)µν . Eventually we shall have to replaceA0 with iA0. We postpone doing
this, however, until the very end of the calculation.

Of course, the above expressions giving the energy–momentum tensor in terms of the heat
kernel need to be properly UV regularized. We see that these results differ essentially from the
nongauge results given earlier, since in the present caseTµν is expressed as a Matsubara sum
overnonidenticalspatial problems, the latter depending on Matsubara labelm. In particular, an
immediate separation into sea and thermal gas (or more properly, thermal plasma) contributions
is, in general, not possible at this stage, as already mentioned.

2.2.1. Constant gauge potential.To begin with we consider a constant Euclidean background
gauge potential

A0 = 2π

β
a EA = 0. (2.17)

Here a factor1
β

has been extracted to makea dimensionless. As we have already pointed out,

on the cylinderS1×Rd this gauge potential cannot be gauged to zero; however, with the above
parametrization, it is gauge equivalent to a potential witha in the range 06 a 6 1. On the
other hand, the spatial componentEA of a constantAµ can always be gauged to zero on this
cylinder, so that we may chooseEA = 0.

Following our general notation we have in this case (for infinite volume the indexn

becomes the continuous momentum labelEk)

φmk(Ex) = 1

(2π)
d
2

eiEk·Ex

λ2
mk =

(
2π

β

)2

(m− a)2 + Ek2
(2.18)

and

Vm(Ex) =
(

2π

β

)2

(m− a)2

hm(t; Ex, Ey) = e−(
2π
β
)2(m−a)2

h0(t; Ex − Ey)
(2.19)

where

h0(t; Ex − Ey) = 1

(2π)d

∫
ddk e−t Ek

2
eiEk·(Ex−Ey)

= 1

(4πt)
d
2

e−
(Ex−Ey)2

4t

is the infinite volume, zero-temperature heat kernel of the free scalar field.
The factorization of the heat kernelhm into anm-dependent and anm-independent factors

now enables one to perform Matsubara sums explicitly by making use of the identity
∞∑
−∞
(m− a)2e−b(m−a)

2 = 1

2b

∞∑
−∞

e−b(m−a)
2 − 2

(π
b

)5
2
∞∑
n=1

n2e−
n2π2

b cos(2πan) (2.20)
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obtained from (2.3) by differentiation with respect tob. One finds for the EuclideanT00, after
some simple algebra,

T
(β)

00 = T sea00 + T plasma00 (2.21)

where the temperature-independent part representing the sea is given by the UV-divergent
integral

T sea00 =
1

2

∫ ∞
0

dt e−tM
2
(4πt)−(

d+1
2 )

[
d − 1

2t
−M2

]
(2.22)

and the temperature dependent part representing the thermal plasma carries all the dependence
on the gauge potential and is finite:

T
plasma

00 =
∫ ∞

0
dt e−tM

2
(4πt)−(

d+1
2 )
∞∑
n=1

cos(2πan)

{
n2β2

4t2
+
d − 1

2t
−M2

}
e−

n2β2

4t . (2.23)

The integral in (2.23) can be evaluated in terms of the modified Bessel functionKν(z), but
we shall not do so. It is important to observe that the thermal part vanishes exponentially as
T → 0, and that it exhibits the expected periodicity property in the Euclidean parametera,
in line with our earlier observation thata can always be chosen to lie in the interval [0, 1].
In [8–10] the authors presentedT > 0 effective Lagrangians for thermal spinor fields coupled
to a constant backgroundA0, displaying a similar cosine dependence on EuclideanA0.

2.2.2. Constant electric field.Next we consider the linear Euclidean background potential

A0(x1) = Ex1 + 2πa/β EA = 0 (2.24)

corresponding to a constant background electric fieldEE = (−E, 0, . . . ,0) in thex1 direction.
As will be seen, the limitE → 0 is highly nontrivial. For that reason we have chosen to
separately analyse theE 6= 0 problem here and theE = 0 problem in section 2.2.1 above.

Continuing with our general notation (where nown→ (n, Ek⊥))we have the spatial modes

ϕmnEk⊥(Ex) = ϕn(xm)(2π)−
1
2 (d−1)eiEk⊥·Ex⊥ (2.25)

with Ek⊥ = (k2, . . . , kd) and Ex⊥ = (x2, . . . , xd) representing momentum and position
perpendicular tox1. InsertingϕmnEk⊥ into the spatial mode equation (2.8) one obtains[

− d2

dx2
m

+E2x2
m

]
ϕn(xm) = εnϕn(xm) (2.26)

where

xm ≡ x1 +
2π

βE
(a −m). (2.27)

This is just the harmonic oscillator eigenvalue problem in Schrödinger theory with orthonormal
eigenfunctions

ϕn(xm) = 2−n/2
1√
n!

(
E

π

)1
4

e−
1
2Ex

2
mHn(
√
Exm)

εn = 2E(n + 1
2) n = 0, 1, 2, . . . .

(2.28)

HereHn(z) are Hermite polynomials satisfyingy ′′ − 2zy ′ + 2ny = 0. In equation (2.8) them-
dependent backgroundsVm(x1) = E2x2

m are identical harmonic oscillator potentials centered
at equidistant positionsx1 = (m − a)2π/βE. As we shall see this periodic arrangement
of identical potentials leads to a periodic structure alongx1 (with period1x1 = 2π/βE)
in EuclideanTµν(x) and in other Euclidean local quantum functions. Therefore, them
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dependence ofϕmnEk⊥(Ex) resides entirely in the argumentxm of the harmonic oscillator wave
functionϕn(xm), i.e. entirely in the positionx1 = (m− a)2π/βE of the zero ofVm(x1). One
consequence of this fact is that the spectrum of−D2 given by

λ2
mnEk⊥ = 2E(n + 1

2) + Ek2
⊥ (2.29)

doesnot depend on the Matsubara labelm. This is in sharp contrast with the nongauge scalar
theory of section 2.1 with its spectrum (2.2), and with the constantAµ problem above with
spectrum (2.18).

The spatial heat kernel (2.11) constructed from the spatial modes (2.25) is

hm(t; Ex, Ey) = kE(t; xm, ym)h0(t; Ex⊥ − Ey⊥) (2.30)

where

kE(t; xm, ym) =
∞∑
n=0

e−tλ
2
nϕn(xm)ϕ

∗
n(ym)

=
[

E

2π sinh(2Et)

] 1
2

e−
1
2E(x1−y1)

2 coth(2Et)e−Exmym tanh(Et) (2.31)

andh0 is the free-space heat kernel ford − 1 dimensions. The mode sum
∑

n here has been
performed with the help of the identity (see, e.g., [17] p 194)
∞∑
n=0

1

n!

( z
2

)n
Hn(x)Hn(y) = (1− z2)−1/2 exp

{
z

1− z2
[2xy(1− z)− z(x − y)2]

}
.

Alternatively, one can use known formulae for the propagator in the harmonic oscillator
problem. Note that in the limitE → 0 the heat kernel (2.31) smoothly becomes the one-
dimensional free-space heat kernel as it should

kE(t; xm, ym)→ 1√
4π

e−(x1−y1)
2/4t E→ 0.

The limit E → 0 is nonetheless far from being uniform: asE → 0 the potentials
Vm(x1) = E2x2

m → (2πm/β)2 change intom-dependent constants (like mass terms)
independent ofx1. The background returns to the constant potentialAµ = (2πa/β, E0) of
the preceeding section with its spectrumλ2

mk = (m − a)2(2π/β)2 + Ek2. Remarkably, the
dependence onm so conspicuously absent from theE > 0 spectrumλ2

mnk⊥ re-enters the
E = 0 spectrum.

The Green function (2.10) and local quantities derived from it possess the sea + plasma
structure one expects to find. Let us display this for the Green function (2.10) in the limit
y → x;

〈|φ̂(x)|2〉β =
∫ ∞

0
dt e−tM

2
(4πt)−d/2

[
2Et

sinh(2Et)

] 1
2 1

β

∑
m

e−Ex
2
m tanh(Et) (2.32)

where, using the identity (2.3), the Matsubara sum can be evaluated with the result

1

β

∞∑
m=−∞

e−Ex
2
m tanhEt =

[
E

4π tanhEt

] 1
2 ∞∑
n=−∞

e−n
2β2E/4 tanhEte−in(2πa+x1βE). (2.33)

Thus, we find

〈|φ̂(x)|2〉sea = 〈|φ̂(x)|2〉T=0 =
∫ ∞

0
dt e−tM

2
(4πt)−

d−1
2

E

4π sinhEt
(2.34)

〈|φ̂(x)|2〉plasmaβ =
∫ ∞

0
dt e−tM

2
(4πt)−

d−1
2

E

4π sinhEt
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×
∞∑
n=1

2 cosn(2πa + x1βE)e
−n2β2E/4 tanhEt . (2.35)

One easily verifies that〈|φ̂(x)|2〉sea coincides with the correspondingT = 0 quantity
〈|φ̂(x)|2〉T=0 as it should. Of course, this function needs UV renormalization. All dependence
on temperature is in〈|φ̂(x)|2〉plasmaβ . The latter function is finite and it vanishes exponentially
asT → 0. Moreover, it is periodic inx1 with period1x1 = 2π/βE, reflecting the equidistant
arrangement of potentialsVm(x1) = E2x2

m.
We now proceed to the straightforward calculation ofT (β)µν . Using equations (2.13)–(2.16)

one easily verifies

T
(β)

00 (x) = T sea00 + T plasma00 (x1) (2.36)

where

T sea00 =
1

2

∫ ∞
0

dt e−tM
2
(4πt)−

1
2 (d−1) E

4π sinhEt

[
d − 1

2t
−M2

]
(2.37)

and

T
plasma

00 (x1) =
∫ ∞

0
dte−tM

2
(4πt)−

1
2 (d−1) E

4π sinhEt

∞∑
n=1

e−n
2β2E/4 tanhEt cosn(2πa + x1βE)

×
[
d − 1

2t
−M2 + n2

(
Eβ

2 sinhEt

)2
]
. (2.38)

The above results for the virtual sea and thermal plasma have been obtained by performing the
Matsubara sums in equation (2.36) with the help of the identities (2.3), (2.20). For the reader’s
convenience we give the form in which the latter identity is used here:

E2

β

∞∑
m=−∞

x2
me−x

2
mE tanhEt =

[
E

4π tanhEt

] 1
2 E

2 tanhEt

×
{ ∞∑
n=−∞

e−n
2β2E/4 tanhEte−in(2πa+x1βE)

− β2E

tanhEt

∞∑
n=1

n2e−n
2β2E/4 tanhEt cosn(βEx1 + 2πa)

}
. (2.39)

Of course,T sea00 needs UV renormalization. In the limitE → 0, T sea00 andT plasma00 above
smoothly become theE = 0 functions (2.22), (2.23).

As expected,T sea00 , although a function ofE, is independent of position: the uniform
electric field leaves the virtual sea spatially uniform. Physically, this seems reasonable. Virtual
particles do not have the prolonged existence needed to participate in e.g. thermal equilibrium.
This is why the sea remains temperature independent.

Things are different for the thermal plasma. The particles of the thermal plasma do have
prolonged existence, and they do participate in thermal equilibrium. Moreover, these charged
particles feel the background gauge potential itself.

2.2.3. Continuation to Minkowski space–time.Continuing our results to Minkowski space–
time by settingE = iE, a = i µβ2π , whereE represents the Minkowski electric field andµ is a
chemical potential for the scalar field (see, e.g., [19]), we finally obtain

T sea00 =
1

2

∫ ∞
0

dt e−tM
2
(4πt)−

1
2 (d−1) E

4π sinE t

[
d − 1

2t
+M2

]
(2.40)
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and

T
plasma

00 (x1) =
∫ ∞

0
dt e−tM

2
(4πt)−

1
2 (d−1) E

4π sinE t

∞∑
n=1

e−n
2β2 E

4 tanE t coshnβ(µ + x1E)

×
[
d − 1

2t
+M2 + n2

(
Eβ

2 sinE t

)2
]
. (2.41)

The integral (2.40) for the energy density of the virtual sea is singular att = 0 ( the usual free
space UV divergence) and at the pointst = q(πE ), q = 1, 2, 3 . . .. Schwinger, in his classic
treatment [2] of theT = 0 version of this problem, interprets such additional singularities in
t in terms of pair production from the sea by the electric field. We have nothing to add to this;
our concern is the effect of a constant electric field on the thermal plasma. The integral (2.41)
for the energy density of the thermal plasma isnon-singular. Indeed, in other Casimir-like
contexts [18], the functions representing the thermal plasma are always finite and require
no renormalization. This continues to be true for static background electromagnetic fields
interacting with charged scalar fields.

For comparison with Schwinger’s calculation [2] we sketch our derivation of his result for
the effective Lagrangian of theT = 0 scalar field. Define the space–time zeta function

Z(s|x, x)β ≡ µ2s
∑
m,n

[λ2 +M2]−s |φmn(x)|2

= µ2s

0(s)

∫ ∞
0

dt t s−1e−tM
2 1

β

∑
m

hm(t |Ex, Ex)

wherehm is the heat kernel (2.11), in general. For the specific heat kernel (2.30), (2.31), the
Matsubara sum can again be performed using equation (2.33). Defining the thermal Lagrangian
Lβ = Lsea + Lβplasma by Lβ = −Z′(0|x, x)β , where the prime denotes differentiation with
respect tos, one finds

Lsea = −
∫ ∞

0
dt e−tM

2
(4πt)−

1
2 (d+1) E

sinE t
(2.42)

Lβplasma(x1) = −
∫ ∞

0
dt e−tM

2
(4πt)−

1
2 (d+1) E

sinE t

∞∑
n=1

e−
n2β2E
4 tanhE t 2 coshnβ(µ + Ex1). (2.43)

The plasma contributionLplasma vanishes exponentially as the temperature goes to zero. The
temperature independent partLsea agrees ford = 3 with Schwinger’s result for aT = 0 scalar
field in a constant background electric field [2].

The integral (2.42) diverges att = 0 and needs UV regularization. It also exhibits
singularities att = q(πE ), q = 1, 2, 3 . . .. As shown by Schwinger [2], removal of the
latter singularities generates an imaginary part in the renormalizedLsea, which corresponds
to particle production from the virtual sea by the electric field. In contrast, the integral (2.43),
representing the plasma contribution toLβ is finite and real. Thus, finite temperature has no
effect on the rate of particle production by the electric field [8,10]. We believe this should be
the case, since particle production occurs from the virtual sea, which is independent ofT .

A final comment concerns coshnβA0(Ex) under the sum in equation (2.41) and in other
local quantum functions characterizing the thermal plasma. Clearly, what is displayed is the
Minkowski gauge potentialA0 behaving as a chemical potential. It costs potential energy
ε = ±A0(Ex) to create a scalar particle/antiparticle at locationEx. The interpretation of a
constant term iµ in the Euclidean gauge potentialA0 (orµ in the Minkowski gauge potential
A0) as a chemical potential was noticed long ago (see, e.g., [19] and early references therein).
Formulae such as equation (2.41) extend this idea to arbitrary functionsA0(Ex). But notice
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that other factors under the sum in equation (2.41) also depend on the electric field. Thus,
equation (2.41) does not result simply from standard statistical mechanics considerations.

Previous studies of thermal fields coupled to a uniform electric field [8–10], using real-time
global methods, could not pick up the coshnβ(µ + Ex1) dependence inLβplasma(x1).

The exponential dependence on the direction parallel to the electric field reflects the
instability of the physical system under consideration, and suggests the following physical
picture: pair production from the sea is independent of the temperature and uniform throughout
space, since pairs are produced essentially at a point and therefore electrostatic energy is
not involved. The thermal plasma, on the other hand, is sensitive to the external voltage
A0 = µ + Ex1, which is seen from (2.43) to play the role of a position-dependent chemical
potential. This is the situation in infinite space, as discussed here. A possible physical
interpretation of the system in question is that the time interval has not been sufficiently long
for the applied electric field to be depleted by particle production [10]. If, on the other hand,
the applied electric field were that of two isolated charged plates, the electric field would be
depleted after some time, eventually leading to a stable condition of the plasma. As mentioned
in [7], this final situation could be formally described by the introduction of a space-dependent
chemical potential.

It would be interesting to see how ourx1-dependent result is reproduced by real-time
methods. In particular, the relation between our local results and the global results of [8–10],
are by no means clear and deserve further study. This is, however, outside the scope of the
present paper.

2.2.4. Constant magnetic field.To investigate the effect of a uniform background magnetic
field on the virtual sea and thermal gas of a scalar field it is of particular interest to
consider the cased = 3 spatial dimensions. We choose for the static background potential
Aµ = (0, 0, Bx1, 0) leading to the magnetic fieldEB = (0, 0, B). Following our general
notation we then have for the spatial modes (nown→ (n, k2, k3))

φmnk2k3(Ex) =
1

2π
ei(k2x2+k3x3)ϕn(xk2)

wherek2, k3 are continuous momentum labels in finite space and

xk2 = x1 +
k2

B
.

The modesϕn(xk2) are the harmonic oscillator wavefunctions (2.28) satisfying

[−∂2
1 +B2x2

k2
]φn(xk2) = 2B(n + 1

2)φn(xk2).

The eigenvalues of−D2 are now

λ2
mnk2k3

=
(
m

2π

β

)2

+ 2B

(
n +

1

2

)
+ k2

3

and are independent ofk2.
It is already apparent that the uniform magnetic field does not introduce spatial non-

uniformity into either the virtual sea or the thermal gas. Indeed, all mode sums involve an
integration ink2 over the infinite interval [−∞,∞]. Sincek2 is a continuous variable we
can perform the shiftk2 → k2 − Bx1 in the integration variable, thereby absorbing thex1

dependence into the integration. ThusTµν and other local quantum functions will not depend
onx1. See [6] for considerably more detail, especially onLβ .

If, however, we compactify thex2 direction perpendicular to the magnetic field to a circle
of perimeterL, we are led to a real-time problem paralleling the Euclidean one with constant



7474 A A Actor et al

electric field discussed above. Compactx2 corresponds to discrete momentak2 = p( 2π
L
), with

p running over all integers (as in the case of the Matsubara index). The harmonic oscillator
mode equation above becomes

[−∂2
1 +B2x2

p]ϕn(xp) = 2B(n + 1
2)ϕn(xp)

wherexp = x1 +p 2π
BL

. Again we have an infinite set of harmonic oscillator potentials equally
spaced at intervals1x1 = 2π

BL
along thex1-axis. Consequently, local quantities such asTµν

are periodic inx1 with period1x1. Clearly one is encountering something akin to the quantum
Hall effect.

3. Conclusion

By calculating the thermal stress tensorT (β)µν (x) of aT > 0 scalar quantum field in the presence
of a constant electric field, we found that the thermal plasma distribution of the scalar field
becomes non-uniform along the direction ofEE, while the virtual sea remains uniform. On the
other hand, a background uniform magnetic field does not lead to a spatial non-uniformity in
either plasma or sea unless we compactify one of the spatial directions perpendicular to the
magnetic field (sayx2) to a circle. In this case periodicity of the energy density distribution
is found along a direction perpendicular to bothx2 and to the magnetic field. In both cases
(electric and magnetic field) this spatial non-uniformity can be traced to the underlying gauge
invariance of the theory and the possibility of mappingA0(Ex) andA2(Ex) into the intervals
[0, 2π

β
] and [0, 2π

L
], respectively, by a bona fide gauge transformation.

Our exact results for a constant background electromagnetic field have a natural extension
to arbitrary static background fieldsEE(Ex) and EB(Ex). One relevant equation to consult is
equation (2.8). There we see that the space components of the vector potential are decoupled
from the Matsubara indexm. For an arbitrary static magnetic fieldEB = ∇ × EA with
A0 = 0 (recall that at finite temperatureA0 = 0 cannot be generally achieved by a gauge
transformation) one simply makes the replacementsλ2

mn → ( 2πm
β
)2 + ω2

n andϕmn → ϕn in
equation (2.8). The spatial mode equation then becomes

[−(∇ − i EA)2]ϕn(Ex) = ω2
nϕn(Ex).

For arbitrary EB(Ex) one thus has a situation much like the non-gauge theory of section 2.1,
leading to some non-uniform distribution of both the sea and plasma components comparable
with what physical boundaries would cause.

The situation is quite different whenA0 is non-zero. Then the static background field
affects the sea and plasma quite differently. While our calculations apply strictly only for
constant EE, one would expect for any electric field which is only weakly dependent onEx
a roughly similar response from the plasma, and a nearly uniform distribution of the sea
component. Mathematically, we have an infinite set of eigenvalue equations with adifferent
Schr̈odinger-like background potentialVm(Ex) = [A0(Ex) − 2πm/β]2 for each Matsubara
frequency. Note thatm→ m+N corresponds to performing an allowed gauge transformation
with gauge functionλ = x0(2πN/β), and thatVm+N(Ex) andVm(Ex) are connected by this
gauge transformation. This situation differs fundamentally from the non-gauge case, where
the potentialV (Ex) does not bear the labelm. Since Green functions, the energy–momentum
tensor, etc, are given in terms of equally weighted sums over all the individual problems
labelled bym, they are explicitly gauge invariant.

In general the diagonal heat kernel of a scalar or fermion quantum field at finite temperature
T > 0 in astaticbackground should factorize in the following way:

h(β)(t; x, x) = h(t; x, x)T=0[1 + f (t; x; T )]
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where h(t; x, x)T=0 is the zero-temperature heat kernel for the static background, and
f (t, x, T ) is some function of the temperatureT , the diffusion or ‘proper’ timet and the
spatial positionEx. This functionf vanishes exponentially as eitherT → 0 or t → 0.
The factorization above is expected becauseh(β)(t; x, x) separates quite generally for a static
background into an UV divergent sea part, and an UV finite gas part [9,18]

h(β)(t; x, x) = h(t; x, x)sea + h(t; Ex)gas
where we make the identification

h(t; x, x)sea = h(t; x, x)T=0.

Definingf (t; x; T ) by

h(t; Ex)gas = f (t; x; T )h(t; x, x)T=0

leads to the factorization above. Known properties ofh(t; Ex)gas then imply the stated properties
of f .

It is a matter of some interest to study the functionf (t, Ex; T ). Let us list the explicit
examples computed in this paper.

• Non-gauge scalar theory:

f = 2
∞∑
n=1

e−n
2β2/4t .

• Gauged scalar theory withA0 = Ex1 + const:

f = 2
∞∑
n=1

e−n
2β2E/4 tanE t coshnβA0.

From the gauge theory example we see thatf (t, Ex; T ) in general depends onA0 when a gauge
potential background is involved. Investigation of this dependence for arbitraryA0(x) is an
interesting mathematical problem. Work on this is in progress.
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